CELL DEATH: NECROSIS
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Karyorrhexis Karyolysis

Adapted from: http://slideplayer.com/slide/8876020/

Adapted fromCantelli Forte, Galli, Hrelia, Marinovich
“Tossicologia molecolare e cellulare” Ed. UTET

Morphological evolution of necrosis
In a first phase:

* Cell swelling
* Mitochondria swelling
* Pycnosis

In a second phase:

* Karyorrhexis/karyolysis, degradation of organelles, cytoskeleton and
plasma membrane

® Cells lyse and release all content in the extracellular space, initiating
inflammatory processes (recruitment of macrophages, granulocytes, etc.) that
can also damage neighbouring cells.



CELL DEATH: APOPTOSIS

Adatpted from Cantelli Forte, Galli, Hrelia, Marinovich “Tossicologia molecolare e cellulare” Ed. UTET

Morphologic evolution of apotosis
In a first phase
e Cell shrinks, chromatin is condensed along nuclear membrane. Cell
organelles look normal.
* Nucleus fragments into pieces enveloped by nuclear membrane. Nuclear
fragments and organelles are confined in plasma membrane blebs.

In a second phase

* Plasma membrane blebs seal and detach (budding), forming the ‘“apoptotic
bodies” that are phagocytosed and degraded by macrophages or parenchimal
cells. Usually, there is no associated inflammation.
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Adapted from Padanilam B.J. (2003) Am. J. Physiol. 284, F608-627



REGULATION OF APOPTOSIS

A) Extrinsic pathway
Activation of different receptors (death receptors) triggers apoptosis

* CD95 receptors (Fas - APO1)

Activated by CD95 ligand (CD95L, FasL, ApolL), a protein present on
activated T cells.

* TRAIL receptors (TRAILR)

Activated by TRAIL (TNF-related apoptosis-inducing ligand)/Apo2L

* TNF receptors (TNFR-1)

Activated by Tumor Necrosis Factor alfa (TNF-a), a cytokine mainly
produced by macrophages and T cells, but also by other cell types.

* Steroid receptors
Death receptors
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B) Intrinsic (mitochondrial) pathway

In this case, apoptosis is triggered by mitochondrial damage but it can also be
triggered by receptor-activated caspases.

Apaf-1

l

caspases DNA _
fragmentation

Nucleus

C) DNA damage

DNA damage increases p53 expression that, in turn, is able to trigger
enhancement of death receptors and induction of the mitochondrial pathway.
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APOPTOSIS REGULATION
Apoptosis is also regulated by the family of Bcl-2 proteins

Bcl-2 antiapoptotic Bax proapoptotic
activity Bad activity
Bcl-XL (ANTI-A) Bcl-XS| (PRO-A)

These proteins can form homo- and heterodimers
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AUTOPHAGY

Autophagy is a key process for maintaining cell homeostasis by digestion
of dysfunctional organelles/proteins.

It also represents a survival strategy to obtain energy under limiting nutrient
conditions/starvation.

However, both autophagy hyperactivation and failure can lead to cell death.

Progress in Neurobiology 112 (2014) 24.49

Contents lists available at ScienceDirect

Progress in Neurobiology

journal homepage: www.elsevier.com/locate/pneurobio
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REGULATED NECROSIS

NECROPTOSIS
PARTHANATOS
FERROPTOSIS
PYROPTOSIS
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NECROPTOSIS
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Necroptosis molecular mechanisms: Recent
findings regarding novel necroptosis regulators
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Necroptosis 1s a form of regulated necrosis that can be activated by TNFa.,
FasL, TRAIL stimulation, when the apoptotic pathway is inhibited.

It has been hypothesised that necroptosis represents an ancestral necrotic
death mechanism that has been replaced by apoptosis/autophagy during
evolution but that can act as a backup if other death pathways are blocked.

Necroptosis inhibitors could be useful as neuroprotective drugs in cerebral
ischemia and neurodegenerative disorders.

Necroptosis inducers could be useful anticancer drugs.



NECROPTOSIS EXECUTION

* Increased membrane permeability and rupture due to P-MLKL
(mixed lineage kinase domain-like) oligomerization and pore
fomation

» Oxidative stress (NOX, mitochondria)

 Alterations of mitochondria function

e NO production

 Activation of PLA2 and LOXs



PARTHANATOS
Poly-ADPribose-mediated cell death
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PARTHANATOS
Poly-ADPribose-mediated cell death

Parthanatos 1s a regulated form of necrosis that is dependent on

overactivation of PARP-1 (poly-ADPribose polymerase) by various stimuli
(e.g. DNA damage).

Death 1s induced by PARylation of:
» AIF that translocates to the nucleus
* Exokinase with inhibition of glycolysis.

In addition, excessive PARP activation can also induce ATP depletion.
Parthanatos is characterized by large scale DNA fragmentation, chromatin

condensation, dissipation of mitochondrial potential, loss of membrane
integrity.
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Poly(ADP-ribose) polymerase
inhibition: past, present and future
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for the treatment of several types of cancer, and PARP inhibitors have also shown therapeutic
potentialin treating non-oncological diseases. This Review provides a timeline of PARP biology
and medicinal chemistry, summarizes the pathophysiological processes in which PARP plays a
role and highlights key opportunities and challenges in the field, such as counteracting PARP
inhibitor resistance during cancer therapy and repurposing PARPinhibitors for the treatment of
non-oncological diseases.
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FERROPTOSIS

It represents another regulated form of necrosis that is dependent on cellular
iron stores.

Characterized by:

* decreased ferritin

* increased iron uptake

* increased ROS formation

reduced antioxidant defense (X )
lipid peroxidation
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PYROPTOSIS

It represents another regulated form of necrosis that is dependent on formation
of the cellular inflammasome following detection of cytosol contamination or
perturbation (e.g. bacteria).

Inflammasome is a multiproteic platform formed by the oligomerization of
several sensor proteins (e.g. NRL, AIM2, Pyrin).

It activates caspase 1 that, in turn, activates Gasdermin D.

Gasdermin D interacts with the plasma membrane, oligomerizes and forms the
Gasdermin pore that causes cell swelling, membrane rupture and eventual lysis.
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ALTERATIONS OF CELL FUNCTIONS

In this case, toxicants cause cell dysfunction by interfering with different
processes.

* Alterations of cell imputs
a) Decreased transmitter synthesis
b) Vesicle depletion
c) Interruption of transmitter release
d) Inhibition of transmitter metabolism
¢) Reuptake inhibition

* Interactions with membrane/cytosolic receptors

* Alterations of signal trasduction
a) Activation/blockade of ion channels
b) Activation/blockade of second messenge cascades
c¢) Activation/blockade of pumps



REPAIR MECHANISMS
MOLECULAR MECHANISMS

* Protein repair

Thioredoxin and Glutaredoxin ubiquitous proteins with two redox-active
cysteines in the their catalytic centre. They can reduce oxidized proteins
(Prot-SS, Prot1-S-S-Prot2, Prot-SOH) restoring their thiol groups.

Cytocrome b5 reductase restores hemoglobin from methemoglobin (Fe3*
= Fe?"). If damage is extensive, proteins are degraded by lysosomal
proteases or by proteasomes following ubiquitination.

* Lipid repair

Peroxidized lipids can be repaired by a ascorbic acid/a-tocopherol and
glutathione peroxidase/oxidase acting in concert.

Fatty acid hydroperoxides present in membranes can be hydrolyzed by
PLA?2 and replaced by normal fatty acids.

* DNA repair

TISSUE MECHANISMS

These mechanisms are relevant only for tissues that are composed of
renewing cells (e.g. bone marrow, lung and GI epithelium, the epidermis) or
of conditionally dividing cells (hepatic or renal parenchymal cells)

In general: removal of damaged cells = proliferation and migration of
adjacent cells (growth factors, TGF-a, IL-6); and production of extracellular
matrix (anchor/adesion proteins, proteoglycan glycoconjugates, glycos-
aminoglycans, etc.) = stop signals (e.g. TGF-b).

TISSUE NECROSIS: if repair mechanisms are overwhelmed by damage or
if they are inefficient, toxicity progresses to tissue necrosis.

FIBROSIS: pathologic condition characterized by excessive deposition of
an extracellular matrix with abnormal composition. It is another
manifestation of dysrepair.



TISSUE MECHANISMS

Fibrosis is detrimental because:

it compresses the parencymal cells and blood vessels decreasing blood
supply;

* it represents a barrier to diffusion of nutrients to cells

« it causes an increase of rigidity that affects elasticity/flexibility of tissues
(e.g. heart and lungs)



