Breaking waves are generally divided into three main types,
depending on the steepness of the waves and the slope of the
shoreface:

Spilling takes place when steep waves propagate over flat
shorefaces. Spilling breaking 1s a gradual breaking which takes
place as a foam bore on the front topside of the wave over a
distance of 6-7 wavelengths.

Plunging 1s the form of breaking where the upper part of the
wave breaks over its own lower part in one big splash whereby
most of the energy is lost. This form of breaking takes place in
case of moderately steep waves on a moderately sloping
shoreface.




Surging 1s when the lower part of the wave surges up on the
foreshore in which case there 1s hardly any surf-zone. This
form of breaking takes place when relatively long waves
(swell) meet steep shorefaces.
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Depth-induced wave-breaking: spilling, plunging and surging




White-capping or top-breaking 1s steepness-induced wave-
breaking which occurs on deeper water when the wave
height becomes too large compared to the wavelength.

Wave-overtopping takes place when waves meet a
submerged reef or structure, but also when waves meet an
emerged reef or structure lower than the approximate wave
height. During over-topping, two processes of importance
for the coastal processes take place: wave transmission
and passing of water over the structure.
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LONGSHORE SEDIMENT TRANSPORT



The breaking waves and surf in the nearshore combine with
various horizontal and vertical patterns of nearshore currents to
transport beach sediments. Sometimes this transport results
only in a local rearrangement of sand into bars and troughs, or
into a series of rhythmic embayments cut into the beach. At
other times there are extensive longshore displacements of
sediments, possibly moving hundreds of thousands of cubic
meters of sand along the coast each year.

We introduce the techniques that have been developed to
evaluate the longshore sediment transport rate, which 1s defined
to occur primarily within the surf zone, directed parallel to the
coast.

This transport 1s among the most important nearshore processes
that control the beach morphology, and determines 1n large part
whether shores erode, accrete, or remain stable.




Currents associated with nearshore cell circulation generally act
to produce only a local rearrangement of beach sediments.

The rip currents of the circulation can be important in the cross-
shore transport of sand, but there is minimal net of beach
sediments along the coast. More important to the longshore
movement of sediments are waves breaking obliquely to the
coast and the longshore currents they generate, which may flow
along an extended length of beach.

The resulting movement of beach sediment along the coast is
referred to as [ittoral transport or longshore sediment transport,
whereas the actual volumes of sand involved in the transport are
termed the littoral drift.

This longshore movement of beach sediments 1s of particular
importance in that the transport can either be interrupted by the
construction of jetties and breakwaters, or can be captured by
inlets and submarine canyons.




Littoral transport can also result from the currents generated by
alongshore gradients in breaking wave height, commonly called
diffraction currents.

This transport 1s manifest as a movement of beach sediments
toward the structures which create these diffraction currents (such
as jetties, long groins, and headlands). The result i1s transport in
the “upwave” direction on the downdrift side of the structure.

This, in turn, can create a buildup of sediment on the immediate,
downdrift side of the structure or contribute to the creation of a
crenulate-shaped shoreline on the downdrift side of a headland.



On most coasts, waves reach the beach from different quadrants, producing
day-to-day and seasonal reversals in transport direction. At a particular beach
site, transport may be to the right (lookin seaward) during part of the year and
to the left during the remainder of the year. If the left and right transports are
denoted respectively Qp and Qp, with Qy being assigned a positive quantity
and Q; assigned a negative value for transport direction clarification purposes,
then the net annual transport is defined as

Q ner = Qp + Qg

The net longshore sediment transport rate is therefore directed right and
positive if Qr > Qy, and to the left and negative 1f Qr < Qy .

The net annual transport can range from essentially zero to a large magnitude,
estimated at a million cubic meters of sand per year for some coastal sites. The
gross annual longshore transport 1s defined as

Q Gross = abs(Qg) + abs(Qr ),

the sum of the temporal magnitudes of littoral transport irrespective of
direction. It 1s possible to have a very large gross longshore transport at a
beach site while the net transport 1s effectively zero.

These two contrasting assessments of longshore sediment movements have
different engineering applications.



A distinction 1s made between two modes of sediment transport. suspended
sediment transport, in which sediment is carried above the bottom by the
turbulent eddies of the water, and bed-load sediment transport, in which the
grains remain close to the bed and move by rolling and jumping.

Because 1t 1s more readily measured than the bed-load transport, suspended
load transport has been the subject of considerable study. It has been
demonstrated that suspension concentrations decrease with height above the
bottom. The highest concentrations typically are found in the breaker and
swash zones, with lower concentrations at midsurf positions.

On reflective beaches, at which a portion of the wave energy 1s reflected back
to sea, individual suspension events are correlated with the incident breaking
wave period.

In contrast, on dissipative beaches, at which effectively all of the arriving
wave energy 1s dissipated in the nearshore, long-period infragravity water
motions have been found to account for significant sediment suspension.
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In engineering applications, the longshore sediment
transport rate 1s expressed as the volume transport rate Q;,
having units such as cubic meters per day or per year.

This 1s the total volume as would be measured by survey of
an impoundment at a jetty and includes about 40 percent
vold space between the particles as well as the 60-percent
solid grains.

Another representation of the longshore sediment transport
rate 1s an immersed weight transport rate I, related to the
volume transport rate by

I, =, -p) g1 -mQ,



The potential longshore sediment P, transport rate, dependent on
an available quantity of littoral material, 1s most commonly
correlated with the so-called longshore component of wave
energy flux or power.

P, = (EC)), s, cosa

b b

It 1s necessary to know Ej - the wave energy evaluated at the
breaker line and the the Cy, wave group speed at the breaker line .

The immersed weight transport rate I, has the same units as P
(N/s), so that the relationship

I = KP,

1Is homogeneous, that 1s, the empirical proportionality
coefficient K 1s dimensionless



Field data relating I and P are plotted in the following figure, for which
the calculations of the wave power are based on the root-mean-square
wave height at breaking H . Data presented in the figure include field
data measured from different author

The K coefficient defined here 1s based on utilizing the rms breaking
wave height H. The Shore Protection Manual (1984) presented a
dimensionless coefficient K = (0.39) based on computations utilizing
the significant wave height.

The value of this coefficient corresponding to the rms wave height H 1s
K = 0.92, which is indicated in the next figure with a dashed line for
reference.. The dash-double-dot lines represent a +50 percent interval
around the SPM reference line (K = 0.92).

An early design value of the K coefficient was introduced for use with
rms breaking wave height by Komar and Inman (1970); K = 0.77. This
value 1s commonly seen 1n many longshore transport rate and
computations.
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Some works have domostrated that the sand transport in the nearshore
results from the combined effects of waves and currents; 1.e., the waves
placing sand 1n motion and the longshore currents producing a net sand
advection. Walton (1980, 1982) proposed a longshore sediment transport
calculation method using the breaking-wave-driven longshore current model
of Longuet-Higgins (1970) from which the longshore energy flux factor
becomes

'ngbWV C,
5m V
2) |7

in which W 1s the width of the surf zone, V| is the measured longshore current
at a point in the surf zone, C ¢1s a friction coefficient dependent on Reynolds'
number and bottom roughness, and V, is the theoretical longshore velocity at
breaking for the no-lateral-mixing case.

P




Longshore sediment transport 1s a fluctuating quantity which can be
depicted as shown in the next figure, where positive sediment transport 1s
defined as positive in value if toward the right for an observer looking
seaward from the beach, and negative in value if sediment transport is
toward the left as noted previously.

In terms of “Q,” the net longshore sediment transport rate 1s the “time
average” transport given by
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A littoral sediment budget reflects an application of the principle
of continuity or conservation of mass to coastal sediment.
The time rate of change of sediment within a system is
dependent upon the rate at which material is brought into a
control volume versus the rate at which sediment leaves the
same volume.

The budget involves assessing the sedimentary contributions
and losses and equating these to the net balance of sediment in
a coastal compartment. Any process that results in a net
increase in sediment in a control volume is called a source.
Alternately, any process that results in a net loss of sediment
from a control volume is considered a sink.

Some processes can function as sources and sinks for the same
control volume (e.g., longshore sediment transport).



The balance of sediment between losses and gains is
reflected in localized erosion and deposition. In
general, longshore movement of sediment into a
coastal compartment, onshore transport of
sediment, additions from fluvial transport, and
dune/bluff/cliff erosion provide the major sources
of sediment.

Longshore movement of sediment out of a coastal
compartment, offshore transport of sediment, and
aeolian transport and washover that increase

beach/island elevation produce losses from a control
volume.
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vortex ripples tridimensionali, (¢). Rappresentazione fortemente schematica.
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As opposed to analytical solutions of shoreline change, which simplify the
equations used to predict beach evolution, mathematical modeling
facilitates generalization of these equations so that input parameters may vary
in time and in the longshore, and possibly cross-shore, dimensions.
Numerical models of beach change perform best when a perturbation 1s
introduced to a system that is in equilibrium.

The perturbation to the system might be an introduction or removal of littoral
material (e.g., beach fill, sand mining, release of sediment due to a flooded
river or landslide) or placement of a hardened structure (e.g., groins, detached
breakwaters, seawalls, revetments).

Historical trends of beach change and knowledge of the littoral budget are
typically used to calibrate and verify the controlling equations, then
forecasts may be simulated as a function of various engineering alternatives
and/or wave climate scenarios.

Therefore, beach response as a function of complex coastal processes may be
readily examined in detail with mathematical models.
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Figura 10.4 — Perdite e accumuli di sedimenti per effetto della variazione
del trasporto longitudinale netto



Figura 10.5 — Variazione brusca del trasporto longitudinale netto per la presenza
di un porto, con conseguenti fenomeni di erosione del litorale sottoflutto
e di avanzamento del litorale sopraflutto



A

"

1995 —
L

4920 ——_ \/
LINEE D! RIVA
AGTD e e

MARE

Figura 10.6 — Arretramenti regolari della linea di riva dovuti verosimilmente
a cause naturali

—




1920 .
1950 —~—
2000 = ———————
4990~ aal

MARE

Figura 10.7 — Arretramento recente della linea di riva dovuto verosimilmente
a cause antropiche



0.8 — Naturale tendenza alla rettificazione di una linea di riva convessa verso il mare
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Figura 10.9 — Forti arretramenti della linea di riva alla foce dell’Ombrone



Figura 10.10 — Naturale tendenza alla rettificazione di una linea di riva concava verso il mare



Figura 10.11 - Sezione trasversale con arretramento della linea di riva ed erosione
in bassi fondali e con deposito dei sedimenti in fondali un po’ piu elevati
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gura 10.12 — Rilievi batimetrici all'inizio e alla fine di un determinato periodo
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Figura 10.14 — Variazioni dei sedimenti di una sezione trasversale tra l'inizio e la fine
di un determinato periodo
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Figura 10.15 - Discontinuita dell’andamento della linea di riva
in presenza di opere trasversali
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Figura 10.19 - Andamento del senso del trasporto longitudinale netto lungo un tratto
di litorale, dedotto da analisi granulometriche dei sedimenti
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Table 2
Relative, average and total shoreline rate on urban beaches of Vad paraiso and Vina del Mar The time period considered in the erosion rate cakulation is indicated in pa-

rentheses

Relative shoreline change Average change Total change
(m/yr) (m/yT) (m)
Jul | Jul | Jul | Dec | Apr | Jan | Jan | Sep | Nov | May . Erosion
Beach | 1970 | 1086 | 2003 | 2004 | 2009 | 2013 | 2016 | 2016 | 2016 | 2017 | |Mean | Max | Min | (Change( ) )
Redaca .
(196+-2016) | 096 067 | 023 | 020 002 024 | 067 |-002| | 126 | Accretion
Los
Marineros 031 | 0.05 [-019|-018 014 003 [ 031|019 | -16 | Stability
(1964-2016)
Las Salinas o
(1964.2017) 0.41 |-0.00 010 (-016|-026 010 (006041 [-026] | 33 | Seavitity

Portales -0.76 Erosion
(1964-2016) , _ A |
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Table 3
Current coastal protection structures present along the study area (1: Absent, 2: Experiment, 3: Infrequent, 4: Moderately present, 5: Frequent).

STRUCTURE DEPARTAMENT
GUAJIRA MAGDALFNA ATLANTICO BOLIVAR SUCRE CORDOBA  ANTIOQUIA SAN ANDRES
Concrete 4 4 4 4 - K
Bricks

Stones 1 1 1 1

Seawsll Wood 1 1 1 1 1 1 1 1
Fbregian 1 1 1 1 1 1 1 1

' 1 1 1
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