
To recognize the fundamental variability of the sea surface, it 
becomes necessary to treat the characteristics of the sea 
surface in statistical terms. 
The term irregular waves will be used to denote natural sea 
states in which the wave characteristics are expected to have a 
statistical variability in contrast to monochromatic waves, 
where the properties may be assumed constant. 
Monochromatic waves may be generated in the laboratory but 
are rare in nature. “Swell” describes the natural waves that 
appear most like monochromatic waves in deep water, but 
swell, too, is fundamentally irregular in nature. 
We note that the sea state in nature during a storm is always 
short-crested and irregular. Waves that have travelled far from 
the region of generation are called swells. These waves have a 
much more limited range of variability, sometimes appearing 
almost monochromatic and long-crested.



When the wind is blowing and the waves are growing in 
response, the sea surface tends to be confused: a wide 
range of heights and periods is observed and the length 
of individual wave crests may only be a wave length or 
two in extent (short-crested).
Such waves are called wind seas, or often, just sea. Long 
period waves that have travelled far from their region of 
origin tend to be more uniform in height, period, and 
direction and have long individual crests, often many 
wave lengths in extent (i.e., long-crested). These are 
termed swell. A sea state may consist of just sea or just 
swell or may be a combination of both. 



The ocean surface is often a combination of many wave 
components. These individual components were 
generated by the wind in different regions of the ocean 
and have propagated to the point of observation. If a 
recorder were to measure waves at a fixed location on 
the ocean, a non-repeating wave profile would be seen 
and the wave surface record would be rather irregular 
and random. 
Although individual waves can be identified, there is 
significant variability in height and period from wave to 
wave. Consequently, definitions of wave height, period, 
and duration must be statistical and simply indicate the 
severity of wave conditions.



The concept of significant wave height, which has 
been found to be a very useful index to characterize 
the heights of the waves on the sea surface, will be 
introduced. 
Peak period and mean wave direction which 
characterize the dominant periodicity and direction 
of the waves, will be defined. 
However, these parameterizations of the sea 
surface in some sense only index how big some of 
the waves are. When using irregular wave heights in 
engineering, the engineer must always recognize 
that larger and smaller (also longer and shorter) 
waves 



In the time-domain analysis of irregular or random seas, wave 
height and period, wavelength, wave crest, and trough have to 
be carefully defined for the analysis to be performed. 
The definitions provided earlier in the regular wave is that the 
crest of a wave is any maximum in the wave record, while the 
trough can be any minimum. 
However, these definitions may fail when two crests occur within 
an intervening trough lying below the mean water line.
The more common definitions of wave period are the time 
interval between successive crossings of the mean water level by 
the water surface in a downward direction called zero down-
crossing period or zero up-crossing period for the period 
deduced from successive up-crossings.



First, it would be necessary to assume that the process described 
by the wave record (i.e., a sea state), say η(t), is stationary, which 
means that the statistical properties of η(t) are independent of 
the origin of time measurement. Since the statistics of stationary 
processes are time-invariant, there is no drift with time in the 
statistical behaviour of η(t). The stationarity requirement is 
necessary as we shall see later for developing a probability 
distribution for waves, which is the fraction or percentage of time 
an event is not exceeded. The probability distribution may be 
obtained by taking η1(t1), η2(t1), η3(t1),..., as variables, 
independent of the instant t1. If in addition, η(t) can be measured 
at different locations and the properties of η(t) are invariant or do 
not depend on location of measurements, the process may then 
be assumed homogenous. In reality, η(t) may be assumed 
stationary and homogenous only for a limited duration at the 
location data are gathered (usually wind waves 3 hr or less).



Second, the process η(t) is assumed to be ergodic, which means that 
any measured record of the process say η1(t) is typical of all other 
possible realizations, and therefore, the average of a single record in 
an ensemble is the same as the average across the ensemble.
For an ergodic process, the sample mean from the ensemble 
approaches the real mean μ, and the sample variance approaches 
the variance σ of the process (sea state). The ergodicity of η(t) 
implies that the measured realization of η(t), say η1(t1) is typical of 
all other possible realizations η2(t1), η3(t1), ...., all measured at one 
instant t1. 
The concept of ergodicity permits derivation of various useful 
statistical information from a single record, eliminating the need for 
multiple recordings at different sites. 
The assumptions of stationarity and ergodicity are the backbones of 
developing wave statistics from wave measurements. It is implicitly 
assumed that such hypotheses exist in reality, and are valid, 
particularly for the sea state.



Two parameters are frequently used in the 
probability distribution for waves. These are the 
spectral width ν and the spectral bandwidth ε, 
and are used to determine the narrowness of a 
wave spectra. 
These parameters range from 0 to 1, and may be 
approximated in terms of spectral moments by





Spectrum on deep water
In a  point P a sea state is registered obtaining η= η(t), function
that describes the sea surface

Assuming for η(t) a Guassian distribution with mean value equal
to   μη it is possibile to describe the sea surface as a sum of 
elementary components, as

η(t)= Σn an cos(σnt – εn)                                                     

The density of energy of the sea state is equal to 
E = (ρg / T) ∫(o, T )(η 2) dt

E = ρg ∫(0, ∞) S(f) df



The momentum of order r of the spectrum S(f) is defined as

mr = ∫(0, ∞) f r S(f) df
and the momentum of order 0 mo is given by

mo =∫(0, ∞) S(f) df

and consequently

E= ρg mo

An important parameter of the spectrum,  introduced by Longuet-
Higgins,  is the width defined as

ε2 = {(mom2/m1
2) -1}0.5

The infinite narrow spectrum is characterized by a width
parameter ε2→ 0.



JONSWAP (Jointh North Sea WAve Project) introduced by 
Hasselmann et al. (1973)

S(f) = a g2 (2p)-4 f -5 exp{-1.25 (f/fp)-4} exp{lng exp[-0.5(f/fp-1)2/w2]}

where: a is the equilibrium parameter; g is the amplification
parameter and w is the shape parameter.

For a stationary sea state, where the fetch gx/U2 plays an important
role, the above parameters have the following expressions

a = 0.076(gx/U2)-0.22

g = 3.3  (ranging from 1 to 7 usually)

w= wa= 0.07 per f ≤ fp

w= wb= 0.09 per f > fp

fp = 3.5 (gx/U2)-0.33 g / U







The equilibrium form of the PM spectrum for fully-
developed seas may be expressed in terms of wave 
frequency f and wind speed Uw as



In shallow water, the wave spectrum deviates from the 
standard spectra forms presented so far, and at frequencies 
above the peak, the spectrum no longer decays as f-5. 
Kitaigorodoskii et al. (1975) showed that the equilibrium 
range is proportional to -3 power of the wave number, and 
thus, the form of the spectrum is of f-3 in the high-frequency 
range. This change is attributed to the effect of water depth 
on wave spectrum and to the interaction between spectral 
components. 
The spectrum so obtained, the product of JONSWAP and the 
Kitaigorodoskii depth function accounting for the influence of 
the water depth, is called the TMA spectrum after the names 
of three sources of data used in its development (Texel, 
Marsen, and Arsloe).



The TMA spectrum was intended for wave 
hindcasting and forecasting in water of finite 
depth. This spectrum is a modification of the 
JONSWAP spectrum simply by substituting 
Kitaigorodoskii’s expression for effects of the 
finite depth equilibrium function. By using the 
linear wave theory, we find the following 
complete form of the TMA spectrum:





The wave spectra described so far have been one-
dimensional frequency spectra. Wave direction does not 
appear in these representations, and thus variation of 
wave energy with wave direction was not considered. 
However, the sea surface is often composed of many 
waves coming from different directions.
In addition to wave frequency, the mathematical form of 
the sea state spectrum corresponding to this situation 
should therefore include the wave direction θ. Each wave 
frequency may then consist of waves from different 
directions θ. The wave spectra so obtained are two-
dimensional, and are denoted by E(f,θ). 



A mathematical description of the directional sea `state is feasible by 
assuming that the sea state can be considered as a superposition of a 
large number of regular sinusoidal wave components with different 
frequencies and directions. 
With this assumption, the representation of a spectrum in frequency 
and direction becomes a direct extension of the frequency spectrum 
alone, allowing the use of FFT method.
 It is often convenient to express the wave spectrum E(F,θ) describing 
the angular distribution of wave energy at respective frequencies by

where the function G(f,θ) is a dimensionless quantity, and is known as 
the directional spreading function.
Other acronyms for G(f,θ) are the spreading function, angular 
distribution function, and the directional distribution.



From basic concepts of energy conservation and the fact that 
waves do attain limiting fully developed wave heights, it is 
obvious that wave generation physics cannot consist of only 
wind source terms.
There must be some physical mechanism or mechanisms that 
leads to a balance of wave growth and dissipation for the case 
of fully developed conditions. 
Phillips (1958) postulated that one such mechanism in waves 
would be wave breaking. Based on dimensional 
considerations and the knowledge that wave breaking has a 
very strong local effect on waves, 
Phillips argued that energy densities within a spectrum would 
always have a universal limiting value given by
E(f) =( αg^2f^-5)/(2 π )^4



where E(f) is the spectral energy density in units of length 
squared per hertz and α was understood to be a universal 
(dimensionless) constant approximately equal to 0.0081. 
It should be noted here that energy densities in this 
equation are proportional to f-5, and that they are 
independent of wind speed. 
Phillips hypothesized that local wave breaking would be so 
strong that wind effects could not affect this universal 
level. In this context, a saturated region of spectral energy 
densities is assumed to exist in some region from near the 
spectral peak to frequencies sufficiently high that viscous 
effects would begin to be significant. 
This region of saturated energy densities is termed the 
equilibrium range of the spectrum.





A “fully developed” wave height would evolve under 
the action of the wind. From basic concepts of energy 
conservation and the fact that waves do attain 
limiting fully developed wave heights, it is obvious 
that wave generation physics cannot consist of only 
wind source terms.
There must be some physical mechanism or 
mechanisms that leads to a balance of wave growth 
and dissipation for the case of fully developed 
conditions. Phillips (1958) postulated that one such 
mechanism in waves would be wave breaking. 
Based on dimensional considerations and the 
knowledge that wave breaking has a very strong local 
effect on waves



This region of saturated energy densities is termed the 
equilibrium range of the spectrum.
Kitaigorodskii (1962) extended the similarity arguments 
of Phillips to distinct regions throughout the entire 
spectrum where different mechanisms might be of 
dominant importance. Pierson and Moskowitz (1964) 
followed the dimensional arguments of Phillips and 
supplemented these arguments, with relationships 
derived from measurements at sea. 
They extended the form of Phillips spectrum to the 
classical Pierson-Moskowitz spectrum



E(f) = (αg^2f^-5 /(2π )^4) *exp( 0,74*(f/fu)^-4))

fu = limiting frequency for a fully developed wave 
spectrum (assumed to be a function only of wind 
speed)



In the numerical models to generate sea state, it was 
recognized that waves in nature are not only made up of 
an infinite (continuous) sum of infinitesimal wave 
components at different frequencies but that each 
frequency component is made up of an infinite 
(continuous) sum of wave components travelling in 
different directions. 
Thus, when waves travel outward from a storm, a single 
“wave train” moving in one direction does not emerge. 
Instead, directional wave spectra spread out in different 
directions and disperse due to differing group velocities 
associated with different frequencies






