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Linear wave theory.

The most elementary wave theory is the small-amplitude or
linear wave theory. This theory, developed by Airy (1845), is
easy to apply, and gives a reasonable approximation of wave
characteristics for a wide range of wave parameters.
A more complete theoretical description of waves may be
obtained as the sum of many successive approximations, where
each additional term in the series is a correction to preceding
terms. For some situations, waves are better described by these
higher-order theories, which are usually referred to as finite-
amplitude wave theories (Mei 1991, Dean and Dalrymple 1991).

Although there are limitations to its applicability, linear theory
can still be useful provided the assumptions made in developing
this simple theory are not grossly violated.



The assumptions made in developing the linear wave theory are:
• the fluid is homogeneous and incompressible; therefore, the

density ρ is a constant;
• surface tension can be neglected;
• coriolis effect due to the earth's rotation can be neglected;
• pressure at the free surface is uniform and constant;
• the fluid is ideal or inviscid (lacks viscosity);
• the particular wave being considered does not interact with

any other water motions. The flow is irrotational so that water
particles do not rotate (only normal forces are important and
shearing forces are negligible);

• the bed is a horizontal, fixed, impermeable boundary, which
implies that the vertical velocity at the bed is zero;

• the wave amplitude is small and the waveform is invariant in
time and space;

• waves are plane or long-crested (two-dimensional).



The assumption of irrotationality stated as the sixth
assumption above allows the use of a mathematical function
termed the velocity potential Φ. The velocity potential is a
scalar function whose gradient (i.e., the rate of change of Φ
relative to the x-and z-coordinates in two dimensions where
x = horizontal, z = vertical) at any point in fluid is the
velocity vector. Thus,
u= δΦ/δx
is the fluid velocity in the x-direction, and
w= δΦ/δz
is the fluid velocity in the z-direction.
Φ has the units of length squared divided by time.

Consequently, if Φ(x, z, t) is known over the flow field,
then fluid particle velocity components u and w can be
found.



The incompressible assumption implies that there is another
mathematical function termed the stream function Ψ. Some
wave theories are formulated in terms of the stream function Ψ,
which is orthogonal to the potential function Φ.
Lines of constant values of the potential function (equipotential
lines) and lines of constant values of the stream function are
mutually perpendicular or orthogonal. Consequently, if Φ is
known, Ψ can be found, or vice versa, using the equations 

δΦ/δx =δΨ/δz

δΦ/δz= - δΨ/δx

termed the Cauchy-Riemann conditions (Whitham 1974; Milne-
Thompson 1976).



Both Φ and Ψ satisfy the Laplace equation which governs the
flow of an ideal fluid (inviscid and incompressible fluid).
Thus, under the assumptions outlined above, the Laplace
equation governs the flow beneath waves. The Laplace
equation in two dimensions with x = horizontal, and z =
vertical axes in terms of velocity potential Φ is given by
δ2Φ/δx2+δ2Φ/δz2 = 0
In terms of the stream function, Ψ, Laplace's equation
becomes 
δ2Ψ/δx2+δ2Ψ/δz2 = 0

The symbol η denotes the displacement of the water
surface relative to the SWL and is a function of x and time
t. At the wave crest, η is equal to the amplitude of the
wave a, or one-half the wave height H/2.



The speed at which a wave form propagates is termed the
phase velocity or wave celerity C. Since the distance
traveled by a wave during one wave period is equal to one
wavelength, wave celerity can be related to the wave
period and length by 
C = L/T

An expression relating wave celerity to wavelength and
water depth is given by
C = √[gLTh(2πd/L)]/(2π)

known as dispersion relation since it indicates that
waves with different periods travel at different speeds.
For a situation where more than one wave is present,
the longer period wave will travel faster. 







The values 2π/L and 2π/T are called the wave number k and
the wave angular frequency ω, respectively. Then an
expression for wavelength as a function of depth and wave
period may be obtained as 

L = gT2/2π * Th(2πd/L)

The unknown value of L appears on both sides of the
equation, to solve it is necessary to define L0 as the
deepwater wavelength, or to utilize the following expression
which is correct to within about 10 percent

L = gT2/2π * √Th[(2π)2d/(T2g)]

 



Classification of 
Water waves
Classification d/L kd Th(kd)
Deep water 0,5 to ∞ π to ∞ =  1
Trasitional 0,05 to 0,5 π⁄10 to π Th (kd)

Shallow water 0 to 0,05 0 to π⁄10 = kd



In wave force studies, the local fluid velocities and
accelerations for various values of z and t during the
passage of a wave must often be found. The horizontal
component u and the vertical component w of the local
fluid velocity are given by the following equations 
 

u= (H/2)*(gT/L)*cos θ*[cosh(2π(z+d)/L)]/cosh(2πd/L)

w= (H/2)*(gT/L)*sin θ*[sinh(2π(z+d)/L)]/cosh(2πd/L)



These equations express the local fluid velocity components
any distance (z + d) above the bottom.
The velocities are periodic in both x and t. For a given value
of the phase angle θ = (2πx/L -2πt/T), the hyperbolic
functions cosh and sinh, as functions of z result in an
approximate exponential decay of the magnitude of velocity
components with increasing distance below the free surface.
The maximum positive horizontal velocity occurs when θ
= 0, 2π, etc., while the maximum horizontal velocity in the
negative direction occurs when θ = π, 3π, etc. On the other
hand, the maximum positive vertical velocity occurs when
θ = π/2, 5π/2, etc., and the maximum vertical velocity in the
negative direction occurs when θ = 3π/2, 7π/2, etc.



The local fluid particle accelerations are obtained by
differentiating the equations of velocity with respect to t.
Thus 

a x=δu/δt=(gπH/L)*sinθ*[cosh(2π(z+d)/L)/(cosh(2πd/L)]

a z =δw/δt=(gπH/L)*cosθ*[sinh(2π(z+d)/L)/(cosh(2πd/L)]





In the following a sketch of the local fluid motion, that
indicates that the fluid under the crest moves in the direction
of wave propagation and returns during passage of the
trough. Linear theory does not predict any net mass
transport; hence, the sketch shows only an oscillatory fluid
motion.
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The following figure depicts profiles of the surface
elevation, particle velocities, and accelerations by
the linear wave theory.
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Another important aspect of linear wave theory deals with
the displacement of individual water particles within the
wave. Water particles generally move in elliptical paths in
shallow or transitional depth water and in circular paths in
deep water (see next figure). If the mean particle position is
considered to be at the center of the ellipse or circle, then
vertical particle displacement with respect to the mean
position cannot exceed one-half the wave height. Thus,
since the wave height is assumed to be small, the
displacement of any fluid particle from its mean position
must be small.



source Coastal Engineering Manual  



Thus, in deep water, the water particle orbits are circular, and
the figures show that in transitional and shallow water, the
orbits are elliptical. The more shallow the water, the flatter the
ellipse. The amplitude of the water particle displacement
decreases exponentially with depth and in deep water regions
becomes small relative to the wave height at a depth equal to
one-half the wavelength below the free surface; i.e., when z =
L0/2.
For shallow regions, horizontal particle displacement near the
bottom can be large. In fact, this is apparent in offshore regions
seaward of the breaker zone where wave action and turbulence
lift bottom sediments into suspension. The vertical displacement
of water particles varies from a minimum of zero at the bottom
to a maximum equal to one-half the wave height at the surface.



Subsurface pressure under a wave is the sum of two
contributing components, dynamic and static pressures, and
is given by

p =  -ρgz-pa+cosθ*[ρgH*cosh(2π(z+d)/L)]/[2cosh(2πd/L)]

where p is the total or absolute pressure, pa is the atmospheric
pressure, and ρ is the mass density of water. The first term
represents a dynamic component due to acceleration, while the
second term is the static component of pressure.
For convenience, the pressure is usually taken as the gauge
pressure defined as

p=p’-pa



The total energy of a wave system is the sum of its kinetic
energy and its potential energy. The kinetic energy is that
part of the total energy due to water particle velocities
associated with wave motion. The kinetic energy per unit
length of wave crest for a wave defined with the linear
theory can be found from

Wave energy

Ek = 1⁄16 *ρgH2L



Potential energy is that part of the energy resulting from
part of the fluid mass being above the trough: the wave
crest. The potential energy per unit length of wave crest for
a linear wave is given by

According to the Airy theory, if the potential energy is
determined relative to SWL, and all waves are propagated in
the same direction, potential and kinetic energy components
are equal, and the total wave energy in one wavelength per
unit crest width is given by 

Ep = 1⁄16 *ρgH2L

E = Ek+Ep = 1⁄8 *ρgH2L



Total average wave energy per unit surface area, termed the
specific energy or energy density, is given by

Ē = E/L = 1⁄8 *ρgH2


